Face to Face in a Fair Game

Pretty 24 is a new cream on the block. Its advertisement takes a potshot at various narratives associated with fairness advertising in India; however, its communication is silent on the benefits of the product. The angry (or upset) young women vent their ire as they feel betrayed by the hordes of Fairness creams in the market. The advertisement ends with a product shot, claiming it as a cream for every skin tone. The brand targets women between 20 and 35 years of age, as reported in livemint.Pretty good… The fairness cream market in India is fairly mature. From general purpose Fairness creams to Men’s Fairness creams to dark spots reduction fairness creams to winter fairness creams; every conceivable sub-category promise has been exploited to grow the market, which is reportedly around INR 4500 crore, and growing! In such a scenario, category creation by careful segmentation holds the key to success for a new entrant in a crowded shelf as the `Anti’ position puts the new entrant in direct competition vis-à-vis the rest. Also, the ability to leverage existing distribution network adds to the muscle mass so critical for success. On all these counts, Pretty 24 sits pretty.


The dark side… Is Pretty 24 a little late? Is it being built on a carefully chosen plank or hunch? Or, is it a manifestation of confusion at the Marketer’s end? Is it an idea whose time peaked some 10, 15, 20 years ago?In India, the pride factor in one’s `own’ complexion has already gained ground; especially with girls-next-door winning the titles such as Ms India, Supermodel, etc. And to the buyer of very premium international brands, complexion has never been an issue. Over the years, most of the fairness cream brands have formulations that offer benefits beyond mild-bleaching to include skin moisturization at the very least.For the Fair’y Tales inspired buyers in Tier II and III, semi-urban centres; it is still `Fairness’ all the way to success. So who is the brand Pretty 24 targeting? And what’s the `reason to buy’, it is offering to the consumers (unless subsequent campaign reveals it).The leader in the `Fairness’ category i.e. Fair & Lovely has long gone beyond `Fairness’ to `Confidence’ and `Success’. There is more to the Brand Fair & Lovely as evident in the tales chronicled in the Fair & Lovely Foundation brochure done by this author. The foundation is doing yeoman service to nurture aspiring, young talented women.


It remains to be seen how the new entrant will affect it. Is Pretty 24 an attempt to cut an instant slice of fairness cream market in India? At mere 1% share translates into INR 40-50 crore!In all fairness… Pretty 24 has to its credit of being not just another offering. It takes immense guts to experiment, to be different. The communication and the proposition make one take cognizance of the brand. But will it make a dent? For a brand’s salience eventually is connect with (benefit offered to) the consumers; and not mere attempts at evoking resentment against other brands.

Successful Design Management for the 6 Stages of Design of Infrastructure and Building Projects

Design Management

Design Management seeks to establish project management practices that are primarily focused on enhancing the design process. For Infrastructure and Building projects the successful implementation of Design Management throughout the entire Project Life Cycle can represent the difference between a superior outcome for the project in terms of Quality, Timing, Cost and Value or failure, given the complexity of Infrastructure and Building projects in today’s environment.

Design Management is however primarily focused on the Design Process within the project framework and as such is only a part of the overall Project Management of a project, albeit a critical part of the project.

If you are going to be a successful Design Manager and achieve superior outcomes for both your clients and your own business, you cannot manage design haphazardly and expect consistent results. You must manage design projects by undertaking a proven stage by stage process. This brief article outlines those stage by stage processes and gives the Design Manager a guide to successfully design managing Infrastructure and Building projects. The Design Management role is considered in this article in the context of an in-house or consultant client side Design Manager and not a Design Manager within the design team itself. It is also on the basis of a fully documented Design and Construct only contract.

Stage 1: Early Design Management Involvement-Statement of Need

The output for this stage will be a Design Report that will directly feed into the Client’s Statement of Need and overall Business Case.

Early involvement to the Project Life Cycle is important but this may need to be reinforced with the Client to appreciate and understand the benefits this will provide. There are several key tasks during this stage:

1.1 Obtaining and Assessing all the available key design Information

  • Collation of all available data and information
  • Visit the site
  • Review contract as related to design aspects
  • Review the level of the design that has been prepared to date
  • Evaluate information and highlight critical issues
  • Review findings with Client
  • Assess the team capability requirements and resourcing
  • Assess any spend on fees required at this stage
  • Engage consultant as required to provide required technical and project inputs to assist the preparation of the design report.

1.2 Design Risk Review

  • Identify design risks and create a Design Risk Register
  • Identify any Safety in Design issues
  • Analyse and provide suggestions for risk mitigation for ongoing stages
  • 1.3 Design Report Input to Statement of Need
  • Prepare draft of design report input into the Statement of Need report and review with Client
  • Prepare final Design Report component into the Statement of Need report

Stage 2: Design Management during the Outline Design Stage

With the Statement of Need or Business Case formally approved for the project to proceed, the next step is to get the Outline Design Stage going.This stage involves clearly defining the Client requirements and project needs so as to form a sound foundation for the design process to proceed and is the right time to engage consultants and set up the formal Design Management process. The following are the key tasks in this stage:

2.1 Define Client design requirements and project design needs

  • Gather all available and updated project data from the Client.
  • Identify any gaps in the information provided.
  • Meet with the Client to review the information provided and identify additional information required.
  • 2.2 Engage Design Consultants
  • Engage all the key consultants that are required to develop the Functional Design Brief. It is critical that the consultant’s scope of work is clear for the level of input required and clearly noted in their Contract.

2.3 Prepare Functional Design Brief

  • Manage and coordinate the consultant team to deliver the Functional Design Brief that will respond to and record all the client requirements and needs and form the basis to proceed for all disciplines.
  • The Functional Brief will generally be supported by Concept design sketches that provide an outline of the proposed design.

2.4 Prepare the Design Management Plan (DMP)

The DMP provides the roadmap for the way the design will be managed and needs to be prepared at this stage of the design process for best results. The DMP is a component of the Project Management Plan prepared by the Project Manager.

The key Design headings in a DMP are as follows:

  • Introduction
  • Project Overview
  • Objectives
  • Process and related procedures
  • Status
  • Documentation & Deliverables Schedule
  • Value Engineering
  • Reviews
  • Change Management
  • Independent Third Party Checks, Permits
  • Quality Management
  • Client Approvals
  • Close Out & As Built Record

2.5 Outline Cost Plan

  • Manage and coordinate the development of the Outline Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.

2.6 Identify Design Risks

  • Identify Design Risks within the overall Risk Management framework.
  • Analyse and manage risks and update the Risk Register, design out risks where possible.
  • Ensure Safety in Design requirements are followed.

2.7 Value Management

  • Arrange a Value Management workshop. Value Management is a systematic review of the essential functions or performance of a project to ensure that best value for money is achieved. It takes an overall view of the function of the project as well as capital and recurrent costs.
  • Prepare a Value Management Report and implement recommendations.

2.8 Project Approvals

  • Outline and define the planning approval process and coordinate with the design process requirements.

Stage 3: Design Management during the Schematic Design Stage

With the Outline Design Stage formally approved for the project to proceed to the next stage, the next step is to get the Schematic Design Stage going. This stage involves developing the design across all the disciplines in response to the approved Functional Design Brief. The following are the key tasks in this stage:

3.1 Manage the Development of the SchematicDesign

  • Manage the team in developing the Schematic Design.
  • Monitor the compliance of the Schematic design with the Functional Design Brief.
  • Review Design Programme and coordinate with overall project programme.
  • Coordinate the development of the Schematic Design with the project procurement process.
  • Manage the preparation of the Schematic Design Report which contains drawings and outline specifications for all disciplines.

3.2 Schematic Design Cost Plan

  • Manage and coordinate the development of the Schematic Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.
  • Identify any major design decisions to the Quantity Surveyor that could influence cost.

3.3 Identify Design Risks

  • Identify Design Risks within the overall Risk Management framework.
  • Analyse and manage risks and update the Risk Register, design out risks where possible.
  • Ensure Safety in Design requirements are followed.

3.4 Value Engineering

  • Arrange a Value Engineering Workshop, including external peer reviewers to negate any “built in” resistance to change and get a fresh perspective
  • Prepare a Value Engineering Report and present to the Client and implement approved Value Engineering recommendations within the Schematic Design Report or in the detailed design stage as appropriate.

3.5 Project Approvals

  • Review and update the planning approval process and coordinate with the design process requirements.
  • Manage the submission of any required Planning Approval Applications.

3.6 Update the DMP

  • Review and update the DMP as required catering for the current project circumstances.

Stage 4: Design Management during the Detailed Design Stage

With the Schematic Design Stage formally approved for the project to proceed to the next stage, the next step is to get the Detailed Design Stage going. This important stage involves developing the design to tender and construction across all the disciplines in response to the approved Schematic Design Report. The following are the key tasks in this stage:

4.1 Manage the Development of the Detailed Design

  • Manage the team in developing the Detailed Design ready for tender including as required coordination meetings between disciplines experiencing coordination difficulties and the exchange of progress design drawings and specification for proper inter-disciplinary coordination.
  • Manage changes and variations.
  • Monitor the compliance of the Detailed Design with the Schematic Design Report, Value Engineering recommendations and the Functional Design Brief.
  • Review Design Programme and coordinate with overall project programme
  • Coordinate the development of the Detailed Design with the project procurement process including early issue of documents to the Quantity Surveyor to start the Bill of Quantities. Any “shortcuts” in the deliverables to accommodate the tender programme need to be fully understood and agreed
  • Coordinate the inputs to the development of the Contract documents being prepared by the Project Manager
  • Consider the requirement for lead disciplines that are producing background and base drawings, such as architects on building projects, to complete these ahead of the supporting engineering disciplines, so as to allow the supporting disciplines adequate time to complete their dependent work. The team cannot realistically work effectively all in parallel to deliver all at the same time without some lag with the lead discipline. It also allows time for the lead consultant to review the documentation from the dependent disciplines. Allow adequate time in the design programme for this lag in completion and coordination.

4.2 Detailed Design Cost Plan and Pre Tender Estimate

  • Manage and coordinate the development of the Detailed Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.
  • Identify any major decisions to the Quantity Surveyor.
  • Prepare for the Pre Tender Estimate (PTE).
  • Take any required action if the PTE is in excess of the Detailed Design Cost Plan.

4.3 Identify Design Risks

  • Identify any additional Design Risks within the overall Risk Management framework.
  • Analyse and manage any remaining risks and update the Risk Register, design out risks where possible
  • Ensure Safety in Design requirements are followed

4.4 Peer Review and Value Engineering

  • Arrange for the drawings and specifications that are being prepared for Bill of Quantities or that are at 90% completion to be issued for external Peer Review to review the “tender readiness” of the tender documents for each of the disciplines. This is also the time to review the consistency of the presentation of the documents across all disciplines and the adherences to project protocols such as title sheet formats, sheet sizes, drawing extents and overlaps, drawing scales, document numbering and revision notation.
  • As part of the Peer Review, Value Engineering of the detailing within the tender documentation should be undertaken at the same time to ensure the detailed design is the most efficient possible.
  • Manage the peer review responses and issue to the team to respond to the comments and incorporate the recommended and agreed comments or mark ups. Allow adequate time in the design programme for this important process.

4.5 Project Approvals

  • Review and update the planning approval process and coordinate with the design process requirements.
  • Manage the submission of any required Planning Approval Applications.
  • Obtain any required certification from the consultants.
  • Manage any required inputs to obtain the required Planning and Building approvals.

4.6 Update the DMP

  • Review and update the DMP as required to cater for the current project circumstances
  • 4.7 Tender Readiness Report
  • Prepare Tender Readiness report to the Client recommending issue to tender including any project issues or risks and the PTE.

Stage 5: Design Management during the Tender Stage

With the Detailed Design Stage Tender Readiness Report formally approved for the project to proceed to Tender, the next step is to arrange the design documents to be issued for tender. The following are the key tasks in this stage:

5.1 Prepare Design Documentation for Tender

  • Manage the team in delivering the documents as per the DMP at the required time in the required hardcopy and soft copy formats to the required locations.
  • Collate the required document transmittals.

5.2 Housekeeping

  • Take the opportunity to catch up with housekeeping of files on the server, in local drives and hardcopies.

5.3 Tender Technical Queries and Clarifications

  • Manage all incoming tender technical queries and clarifications during the tender period and arrange responses from any of the team where required.
  • Participate in any Tender clarification meetings with the contractor as requested by the Project Manager.

5.4 Addendums

  • Manage any design and documentation requirement for addendums that are required due to omissions from the Tender due to time constraints or from new Client requirements.

5.5 Tender Evaluation

  • Manage all required technical tender review and evaluation inputs from the team to allow the tender to be evaluated from a technical perspective.
  • Where required prepare a technical evaluation report and deliver to the Project Manager.
  • Participate in any negotiation meetings where technical matters require further clarification and arrange appropriate technical inputs from team.

5.6 Manage Consultants

  • Manage the finalisation of design related fees and any outstanding variations and claims.

Stage 6: Design Management during the Construction Stage

With the Tender formally awarded and on the assumption that the Project Manager will typically manage the construction phase delivery of the project, then the role of Design Manger will generally be reduced during this stage to a support role only or where required due to incomplete or ongoing design development resulting from client variations or changes made during tender negotiations. The following are some of the key tasks in this stage:

6.1 Issue Approved For Construction(AFC) documents

  • Manage the team in delivering the AFC documents as per the DMP at the required time in the required hardcopy and soft copy formats to the required locations.
  • Collate the required document transmittals

6.2 Housekeeping

  • Take the opportunity to complete the housekeeping of files on the server, in local drives and hardcopies

6.3 Outstanding Design

  • Manage the team in delivering any outstanding design due to client changes or changes resulting from tender negotiations

6.4 Manage Contractor Design Submissions

  • Subject to the complexity of the design, assist the Project Manager to manage the team in reviewing and responding to any contractor designs.

Design Management in Action

The above methodology represents a general approach for Design Managing Infrastructure and Building Project. This methodology has been applied successfully to numerous projects undetaken by the author, however as any Design Manager will know, every project is different and every design and project team is generally comprised of different team members.

The key to making the above methodology work is studying, applying and start implementing it to suit your particular project. It offers focus and a clear direction for any design for an Infrastructure or Building project to achieve a superior outcome for your Client and your own business.

What Is UX Design?

User Experience is a conglomeration of tasks focused on optimization of a product for effective and enjoyable use. User Experience Design is the process of development and improvement of quality interaction between a user and all facets of a company.U ser Experience Design is responsible for being hands-on with the process of research, testing, development, content, and prototyping to test for quality results. User Experience Design is, in theory, a non-digital (cognitive science) practice but used and defined predominantly by digital industries.

Introduction to UX Planning
The easiest way to approach the planning phase for UX projects is to determine the approach you think ought to be taken for a project, then examine the constraints and amend the approach based on these constraints. This should enable you to determine budgets and timescales if they weren’t given to you by your potential client beforehand. UX projects that are well planned are easier to execute and offer a higher chance of succeeding than those that are managed on an ad-hoc basis For designers working in the ever-changing field of user experience, it’s always important to consider the fundamental principles of design. At many levels, the nature of the work that we do constantly shifts and evolves-whether we’re designing for new technologies or different contexts, ranging from apps for personal use to cross-channel experiences. When we’re called upon to solve design problems that we haven’t solved before, design principles provide a sound basis for devising innovative solutions. All of these trends have required us to look at design afresh and come up with new interaction models, design patterns, and standards-many of which are still evolving.

Visual design trends shift as well-sometimes for the better; sometimes not. For example, in the recent past, we saw the prevalent use of small, light-gray fonts that were both too small and too low contrast for good readability-for almost anybody, not just those with serious visual deficits. Now we’re seeing bigger fonts-solving that readability problem. UX Design Principles course provides foundational level skills for those interested or working in user experience design. The workshop covers aspects of designing for web, apps, and mobile. This UX workshop is suitable for designers, business analysts, product managers, and developers. No UX or design previous experience is required. It serves as the foundation for the UX Classes as well as the UX Certificate program at American Graphics Institute.

What is UI Design?
User Interface Design is its complement, the look and feel, the presentation and interactivity of a product. But like UX, it is easily and often confused by the industries that employ UI Designers. User interface design (UID) or user interface engineering is the design of websites, computers, appliances, machines, mobile communication devices, and software applications with the focus on the user’s experience and interaction. UI Design is closer to what we refer to as graphic design, though the responsibilities are somewhat more complex. Human-Computer Interaction (HCI) integrates concepts and methods from computer science, design, and psychology to build interfaces that are accessible, easy to use, and efficient. There are three factors that should be considered for the design of a successful user interface; development factors, visibility factors and acceptance factors. Development factors help by improving visual communication. These include: platform constraints, toolkits and component libraries, support for rapid prototyping, and customizability. Visibility factors take into account human factors and express a strong visual identity. These include human abilities, product identity, clear conceptual model, and multiple representations. Included as acceptance factors are an installed base, corporate politics, international markets, and documentation and training. There are three fundamental principles involved in the use of the visible language.

Do’s and Don’ts of UI and UX Design
User experience online is very similar to the user experience you get when going to a grocery store. You want a pleasant time without any hassle. You want to be able to navigate the store quickly, get what you need right away, head to the checkout line without a wait, and get back home. You don’t want to deal with a slow cashier, items not where they should be or out of stock, hostile employees, or a crammed parking lot. You simply want what you came for (groceries) and be on your way. Stores understand this and have spent a considerable amount of time and money to help you navigate the store easier, make sure items you want are in stock, and to provide fast and friendly checkout lines. It may seem a bit corny to think of UX design in terms of going to your local grocery store, but the experiences are similar. Our customers are visitors to the sites we create, and the groceries are the content in which they came to the site for. For those of us who go to the store, it’s easy for us to pinpoint things that irritate us or think should be improved. However, when it comes to our own designs and user interfaces and the creation of them, we may not be able to point out these irritants ahead of time before users do. We can fix this by taking a step back and look for these weak points in our design, so that we don’t cause them unnecessary frustration and keep them on our site so they can get to the content they were looking for. To help us designers step back and look at our designs and user interfaces from the eyes of the visitor, let’s run through some do’s and don’ts to look out for so we can help them get exactly what they came for without irritation or a bad UX.

1. DO: Provide a similar experience regardless of the device Visitors are coming to your site using many different types of devices. They can visit your site on their desktop or laptop, tablet, phone, music player, game console, or even their watches. A big part of user experience design is ensuring that no matter how the visitor sees your site, they are getting the same experience they would if they were to visit from another device. This means that if a visitor is seeing your site on their phone, they should still be able to find everything they need without trouble just like they would if they were viewing your site on their desktop at home. A seamless experience across all of your devices helps keep your users on your site regardless of the device they are using.

2. DO: Provide instantly recognizable and easy-to-use navigation The key to providing a pleasant user experience for users is to understand that they are in search of content. They want information that you are providing on your site. The way they get there is by using your site’s navigation to quickly get to the content they are looking for. Provide a user-friendly navigation system that is easy to recognize and easy to use. Design your navigation in a way that gets visitors where they want to go with the least amount of clicks as possible while still being easy to scan and locate where they need to go.

3. DON’T: Letting the design of the site hinder the site’s readability The design of a site or user interface should never interfere with the user’s ability to consume the content on the screen. This includes having busy backgrounds behind content or poor color schemes that hinder the site’s readability. Busy backgrounds cause a distraction and take attention away from the content, even more so if the busy background is directly underneath the content. In addition, be careful not to use color schemes that decrease the contrast of the typography on the screen (i.e. light gray type of a white background). Focus on the typography of your site to ensure issues such as line length, line height, kerning, and font choice doesn’t pose issues for readability.

4. DON’T: Hindering a visitor’s ability to scan the screen As I mentioned above, users and visitors alike often scan the screen quickly before settling in to read any one particular thing with focus. Users often scan for visual cues such as headings, pictures, buttons, and blocks to know where they should focus their attention. If you start removing these items, it makes it hard for users to scan your content to find what they are looking for. Using appropriate headings that are easily seen, pictures to illustrate points, buttons for navigation, and blocks of content that are unique or important help users scan the screen to find what they need.

Has BIM Changed MEP Design Workflow?

The MEP design and installation workflow involves a number of stakeholders and parties that are collectively responsible for overseeing a series of stages that will result in the building engineering (or building services) to be planned, designed, spatially coordinated, fabricated, installed, commissioned and maintained. Typically, the building services design stage follows the initial architectural design, from which point it can usually be designed in parallel with further architectural as well as structural design changes.

The engineering teams that typically design building services solutions are usually in one of two groups. The first group is typically the building designer, also known as the consultant engineer or the design engineer. It is the role of the design engineer to work closely with the architect to develop the overall building engineering elements including lighting, cooling, heating, drainage, waste, fire prevention and protection services. Traditionally, the design engineer will not be involved in the detailed spatial design of these services. Instead the detailed spatial design and installation would normally be handled by the second party, known as the MEP contractor (M&E contractor) or trade contractor. The MEP or trade contractor is responsible for evolving the initial consultant design into a workable and installation-ready building services solution.

In some instances, there is also a third party involved – the fabricator, who will be responsible for creating MEP components such as ductwork or pipework elements or in some cases pre-fabricated solutions that consist of pipework, electrical ladder, plumbing, ductwork and sprinkler within a frame (module) that is delivered to site for installation in risers, plant rooms and corridors.

This article is concerned with the role of the MEP designer and MEP contractor, specifically, the focus for this article is to discuss how BIM (Building Information Modelling) has influenced the MEP design workflow between the designer and the contractor.

Current MEP BIM Workflow Options

Essentially there are five different MEP design workflow scenarios that currently exist and these will be discussed in the article. They are as follows

  1. Traditional 2D design and 3D BIM coordination
  2. 3D MEP design and 3D BIM coordination
  3. Designers 3D BIM design and coordination
  4. Contractor 3D BIM design and coordination
  5. General contractor 3D model coordination

Traditional 2D Design and 3D BIM Coordination

Considering the traditional MEP approach first, this is where a consultant will create 2D design outputs, which include 2D plan layouts, 2D sections and MEP (M&E) schematics. This will indicate the design intent for the building based on the use specified by the architect. Once the consultant has completed this design information he will pass on the information to an MEP contractor who will be responsible for creating the MEP coordinated solution. This article assumes that the contractor will create a spatially coordinated 3D BIM model using BIM tools such as Revit MEP and Navisworks. The contractor will use the design information and create an installation-ready solution which takes into account installation, efficiency of pipe runs or duct bends, space for lagging and hanging the services, access for post install maintenance and so on. This traditional MEP approach, from a 2D design to a 3D model has existed for the past couple of decades and allows the contractor to add additional information into the model that can be used by him and by facilities management companies after the installation. The use of the 3D tool such as Revit is of course useful as it is an intelligent model, with parametric components and therefore, as well as allowing the contractor to identify and resolve clashes before any time is spent on site, it has other uses and applications where model ‘information’ is used and relied upon.

3D MEP Design and 3D BIM Coordination

The second workflow method is more directly influenced by BIM. As the MEP designer, one will use BIM tools to create a 3D model and associated drawings during his initial design phase (rather than a 2D design) before this information is handed across to an MEP trade contractor. The MEP design engineer will typically create a 3D model due to customer specifications and requirements for a BIM model, as in many cases a federated model (which combines the other disciplines in a single model) is needed by the client for a weekly review and hence the MEP consultant cannot simply provide a set of 2D drawings. In this workflow, the BIM model is effectively a 3D representation of what would otherwise be a 2D deliverable. It will therefore consist of areas where further changes are still needed by a trade contractor. Such examples include the use of library items rather than specific MEP trade contractor procured elements that may be used in the model. The creation of a 3D BIM model at this stage by the consultant is also subject to multiple architectural and structural model changes. These have a knock-on effect on the MEP solution as it is effectively a work-in-progress model for MEP with constant architectural and structural changes and therefore will never have the same level of efficiency, in terms of layout of services, compared to an MEP model where the architectural and structural models are frozen. The downside of this workflow method is of course the extra time taken to create a BIM model by the consultant team. Added to this issue is the fact that 3D modelling expertise and skills within a consulting engineering team can sometimes be limited. Once the consultant completes his model and passes it to the MEP contractor, the decision as to whether the contractor should adapt the model or start the modelling process from the start is really based on the quality of the model to start with. In reality both scenarios will exist, in some cases the MEP trade contractor is better off starting the BIM model again using only the 2D design drawings that are created by the consultant from his BIM model, while in some rare cases the trade contractor will use the consultants MEP BIM model and adapt and modify it with his changes, to make the model ready for installation. In both scenarios, the MEP contractor will always look to make value engineering additions and changes to the model as well as procurement led model changes.

Designers 3D BIM MEP Design and Coordination

The third MEP design workflow method is a more pure and direct consequence of BIM and it actually also starts to promote the benefit of BIM more significantly as it gets closer to ‘virtual design and construction’ aims of the industry. In this workflow the approach of design engineer is to create a BIM model that is spatially coordinated and that is using the actual specified components for the project. Typically, the consultant during this phase will have a longer period of time to create the model, allowing him to absorb the changes from structural and architectural disciplines as they progress through the detailing stages. The fact that the model is then coordinated with the structure and architecture as well as other MEP services allows the consultant to create a model that is being created according to an installation standard that is now more usable by an installer or fabricator. When the model in this workflow method is passed on to a contractor, the contractor may still wish to make final changes and adjustments in a round of value engineering. Typically, the contractor will use the same model in this workflow and make changes to the model provided by the MEP design consultant. Additionally, it is probable that the consultant engineer will not have provided invert (height) levels or dimensions from gridlines and walls for the MEP services on his drawings. In such cases the contractor will therefore have to create more detail in the drawings, but again contractor could use the consultant’s drawings and progress them in more detail for his/her use.

Contractor 3D Design and Coordination

The fourth workflow method involves MEP contractors (or trade contractors) taking on the design responsibility as well as the coordination responsibility. Whilst the coordination responsibility is an established skillset with experience of developing detailed and comprehensive vertical and horizontal strategies for coordination being part of the contractor’s core skills, the design responsibility is a new element for the contractor. This was traditionally known as a design and build approach; however, it is now becoming increasingly common especially in cases where companies are seeking to have rapid design and detailed coordination completed. Typically, the components to be used will be specified by the end client, allowing the contractor to design and model before creating his detailed coordinated drawings from the model, to allow installation and fabrication if needed. The reason that this particular workflow method is not the most popular at present is simply due to the volume of work in the market and also the design responsibility that also has to be assumed as in most cases, contractors may not wish to accept this risk or indeed they may not have the resources to complete the design work. For this workflow method to exist at all means that the contractor has to employ design staff directly and provide design liability insurance to allow him to design the MEP solution as well as install it. The benefit of this workflow option is obviously the time efficiency that is realized and therefore the cost benefit, as the cost of utilising contractor resource will usually be lower compared to expensive design engineering firms. However, it does come with some risk as the design expertise that design engineers possess cannot be easily replicated by contractors, even if they do employ in-house teams.

General Contractor 3D Model Coordination

The fifth variant of MEP design workflow is based on creating coordinated MEP models similar to the traditional 2D to 3D approach but for a different customer group. In this workflow method a 2D architectural, structural and MEP design that is to be used by a main contractor (or general contractor) is then progressed into a 3D BIM model by the contractor to assess the validity and completeness of the model. In some cases, some of the design elements from the different disciplines may be presented in 3D while others may be in 2D. It is also possible that different disciplines may provide models in different software that may or may not present software interoperability challenges. In such instances, a team will typically be employed to use the design data from architectural, structural and MEP designers to then create a 3D BIM model based on actual data. The aim is to identify any inconsistencies in the design data by identifying any clashes in the model, allowing the contractor in such a workflow method to effectively mitigate his/her potential risk. Any problems found within the model are usually passed back to the designers to make amendments to their 2D design for subsequent changes to the 3D BIM model which is ultimately owned by the main contractor. This BIM workflow solution is becoming less common now because MEP contractors and designers are creating BIM models themselves.

In summary, BIM has introduced a number of new workflow variants to the MEP design services sector. The previously tried and trusted method of a 2D design, from a designer, that was developed into a 3D coordinated MEP model by contractor is no longer the workflow solution used as firms now have many other variants and alternatives available. Along with BIM Modeling, other developments in the construction sector, including collaborative online working and work sharing have also contributed to the uptake levels for BIM and impacted the changes to workflow.

In terms of the MEP design workflow options, the most popular of these as we move forward will be the third option, which is the consultant creating a BIM model that is spatially coordinated, or the fourth option which is the contractor taking on the design responsibility as well as creating the coordinated BIM model. Both options are effectively a change to the traditional approach for MEP design and both point to a single source for the model and drawings as opposed to the historical two-tier design approach. All options discussed will require competent BIM coordination and MEP modelling teams and resources. XS CAD, with its large MEP coordination team and MEP engineering design team, which consists of mechanical and electrical engineering professionals, is well placed to deal with such projects for companies based in the USA, UK, Canada, Australia and New Zealand. As all are regions where BIM is now the preferred solution, XS CAD, with more than 16 years’ experience and a presence in each market is an ideal option for such companies.