Face to Face in a Fair Game

Pretty 24 is a new cream on the block. Its advertisement takes a potshot at various narratives associated with fairness advertising in India; however, its communication is silent on the benefits of the product. The angry (or upset) young women vent their ire as they feel betrayed by the hordes of Fairness creams in the market. The advertisement ends with a product shot, claiming it as a cream for every skin tone. The brand targets women between 20 and 35 years of age, as reported in livemint.Pretty good… The fairness cream market in India is fairly mature. From general purpose Fairness creams to Men’s Fairness creams to dark spots reduction fairness creams to winter fairness creams; every conceivable sub-category promise has been exploited to grow the market, which is reportedly around INR 4500 crore, and growing! In such a scenario, category creation by careful segmentation holds the key to success for a new entrant in a crowded shelf as the `Anti’ position puts the new entrant in direct competition vis-à-vis the rest. Also, the ability to leverage existing distribution network adds to the muscle mass so critical for success. On all these counts, Pretty 24 sits pretty.


The dark side… Is Pretty 24 a little late? Is it being built on a carefully chosen plank or hunch? Or, is it a manifestation of confusion at the Marketer’s end? Is it an idea whose time peaked some 10, 15, 20 years ago?In India, the pride factor in one’s `own’ complexion has already gained ground; especially with girls-next-door winning the titles such as Ms India, Supermodel, etc. And to the buyer of very premium international brands, complexion has never been an issue. Over the years, most of the fairness cream brands have formulations that offer benefits beyond mild-bleaching to include skin moisturization at the very least.For the Fair’y Tales inspired buyers in Tier II and III, semi-urban centres; it is still `Fairness’ all the way to success. So who is the brand Pretty 24 targeting? And what’s the `reason to buy’, it is offering to the consumers (unless subsequent campaign reveals it).The leader in the `Fairness’ category i.e. Fair & Lovely has long gone beyond `Fairness’ to `Confidence’ and `Success’. There is more to the Brand Fair & Lovely as evident in the tales chronicled in the Fair & Lovely Foundation brochure done by this author. The foundation is doing yeoman service to nurture aspiring, young talented women.


It remains to be seen how the new entrant will affect it. Is Pretty 24 an attempt to cut an instant slice of fairness cream market in India? At mere 1% share translates into INR 40-50 crore!In all fairness… Pretty 24 has to its credit of being not just another offering. It takes immense guts to experiment, to be different. The communication and the proposition make one take cognizance of the brand. But will it make a dent? For a brand’s salience eventually is connect with (benefit offered to) the consumers; and not mere attempts at evoking resentment against other brands.

The Ultimate eCommerce Web Designers Trick

Either you’ll be able to go with freelance web designers or can hire total service web designers to get your internet presence, also called website. The very first reason to have your website is your engagement with the internet. There are lots of web designers out there. So when you’re looking to locate a fantastic web designer, the very first thing you’ve got to check is designing services that are quality oriented. Most reputable web designers know not to pick an internet host simply because they’re definitely the most popular or since they supply the cheapest web hosting.

The site designer may get the job done freely or even as a member of a company which is particularly into designing proficient stores. For instance, if you want non-profit website then non-profit website designers are the ideal choice for you. Moreover, flash designs might also be incorporated within the site to make it even more alluring to the clients. Designing an eCommerce website is an extremely professional undertaking. In case the website design of your site cannot pull and convert visitors, then it means your site needs improvement.

Being an owner of a company, you should select an eCommerce web designer that could comprehend the tasks of designing an eCommerce shop. A great designer is going to know that design and SEO go hand-in-hand. They are being snatched by agencies and large projects. They are creative people that need to think out of the box. A superb web designer ought to be in a position to comprehend the emerging trends in the market, the expected changes in web design, current and future trends as well as the most recent web development tools.

Your website design provider should use the ability of Social Media Marketing. Any expert web design company would help the consumers in many respects. An excellent web design company will have great search engine optimisation skills to publicize your website. It’s always preferable to opt for a great web design company that comprises of dedicated and seasoned employees.

So as to create a web site or an internet presence, one wants to employ a website design company. Also, make certain that the website design company ought to have a group of experienced web designers, developers, programmers and testers etc so that you are able to secure all kinds of services under one roof. A seasoned web design company is going to have a good portfolio of internet sites that they’ve created for different customers. New web design businesses are springing up all of the moment, but don’t be tricked by shiny sites loudly proclaiming their amazing services.

The Advantages of eCommerce Web Designers

The Web lets us market our services and products any place in the Earth, but to be able to actually earn a sale, we have to set a relationship that generates a sufficient amount of trust, confidence, loyalty and passion. Environmentally-friendly web hosting is getting more and more popular for business web sites appearing to implement an eco-policy. To rival a number of the biggest bands on the planet, websites have allowed bands the capacity to grow massive online fan bases through pay per view. The site ought to be downloaded as fast as possible. For example, the site of a company making and selling luxury goods needs to seem luxurious also.

If all the sites look alike there’s hardly any chance of the visitor remembering a specific website. Your website ought to have the ideal architecture with easy navigational keys. To acquire the excellent traffic at the site, it is necessary to create the website attractive. First and foremost you must seek out the video sites that will supply you the resources to make your own video. It is due to the fact that the site has to be unique. An eCommerce website is as fantastic as a digital store. eCommerce websites are designed in order to do the business needs.

A specialist site designer if technically sound enough may give a wholly different get until the site. A web site is your internet address which aids you reach customers in every corner of earth, no matter which corner you’re sitting in. In different cases you may employ your website for a lead generation tool where you don’t conduct financial transactions online. Yeah it’s true, your website is online but still you want to give a fantastic customer service online. There are several kinds of websites like eCommerce sites, social media sites, template-based sites, CSS websites and several more.

The Basics of eCommerce Web Designers

Our site brings you different types of explanatory videos to select from. Therefore, in case it’s not possible for the website to be made fully compatible with all browsers due to coding limitations, then the developer needs to understand the numerous types and versions of internet browsers employed by the majority of the website visitors. Creating your web site may be a tricky practice. Building an internet site is a very technical procedure, while designing an internet site is a very creative procedure. The internet site and social networking pages should complement one-another.

 

Decoding the Ductwork Design Process, Methods and Standards

Today, one of the significant objectives in MEP engineering design for HVAC design engineers is to improve energy efficiency, maintain air quality and thermal comfort. Energy efficiency, air quality and comfort in a building depend on how heating, cooling and air distribution systems are designed and this is where careful ductwork design plays a significant role. Ductwork and HVAC system design are important as it ensures indoor air quality, thermal comfort and ventilation. If the HVAC system and ducts are not designed accurately, it could lead to poor air quality, heat loss and make the conditioned space in the building uncomfortable.

The primary function of the ductwork design system is to ensure a least obtrusive channel is provided through which cool and warm air can travel. When designed accurately, HVAC air distribution systems will play an important role in countering heat energy losses, maintaining indoor air quality (IAQ) and providing thermal comfort.

To understand how ductwork can be designed in a cost-effective and efficient manner, this article decodes ductwork design and provides a brief outline of the design process, methods and standards.

What is Ductwork?

The basic principle of ductwork design is to heat, cool or ventilate a building in the most efficient and cost-effective way. The primary function of ductwork is to design conduits or passages that allow air flow to provide heating, cooling, ventilation and air conditioning (HVAC).

In the duct design process, the basics of air flow must be understood. Return air goes into an air handler unit (AHU), through a filter and into the blower and with pressure it goes through the A coil or heat exchanger and then it goes out into the supply air system. If the ductwork is designed correctly it enables the AHU to produce the right amount of air through the heat exchanger. In a typical air distribution system, ducts must accommodate supply, return and exhaust air flow. Supply ducts provide air required for air conditioning and ventilation, return ducts provide regulated air to maintain IAQ and temperature and exhaust air flow systems provide ventilation.

For ductwork design to be efficient, MEP engineering design teams need to have designers with a mechanical and engineering background. Ductwork design specialists or building service engineers must also possess thorough knowledge of other disciplines such as architectural, civil and structural concepts to ensure HVAC systems are clash free.

The Ductwork Design Process

The ducting system design process is simple, provided that the specifications are clearly mentioned and the inputs regarding application, activity, building orientation and building material are provided. Based on the information provided calculations can be completed to create an energy-efficient and clash-free design. Typically, air conditioning and distribution systems are designed to fulfil three main requirements such as:

• It should deliver air flow at specific rates and velocity to stipulated locations.

• It should be energy efficient and cost effective.

• It should provide comfort and not generate disturbance or objectionable noise.

The process of ductwork design starts once architectural layouts and interior design plans are provided by the client or MEP consultants. Building service engineers then require specification requirements such as application, the number of people, the orientation of the building and architectural characteristics to make calculations on heat load and air flow. Before any calculations are carried out, single line drawings are drafted to showcase the flow of ductwork in the building. Once they are approved, calculations for heat load and air flow are conducted. Once the heat load calculations are complete, the air flow rates that are required are known and the air outlets are fixed. With the calculations, specifications and layout, the ducting system design layout is then designed taking into consideration architectural and structural details of the conditioned space and clashes with other building services such as electrical, plumbing (hydraulic) and mechanical services.

To start the ductwork design process there are inputs required regarding details about the type of application, specification requirements, building orientation, architectural characteristic and material.

• Application type - Ductwork design will vary based on the type of application the building will be used for such as manufacturing, data centres, medical applications, scientific research and comfort applications such as restaurants, offices, residences, institutional building such as schools and universities.

• Specification requirement – To create an efficient duct design, designers need to know what type of activity will be conducted and the average number of people that will use the conditioned space. This will help in calculating the air flow, velocity and heat load required to maintain temperatures and IAQ. In comfort applications, for instance, an office or restaurant will require different duct design and air velocity than a residence.

• Orientation and material of the building - The orientation of building and material used plays a key role in gauging heat absorption which will help determine the cooling and ventilation requirements. Based on whether a building faces north, south, east or west, and where it is geographically located, heat absorption can be calculated. The type of material used for construction also affects the amount of heat gain and loss of the building.

The challenges of incomplete inputs or non-availability of required inputs are discussed in an upcoming article on Ductwork Design Challenges and Recommendations.

Ductwork Design Methods

Ductwork design methods are usually determined based on the cost, requirements, specifications and energy efficiency standards. Based on the load of the duct from air pressure, duct systems can typically be classified into high velocity, medium velocity and low velocity systems. There are three commonly used methods for duct design:

1. Constant Velocity Method – This method, designed to maintain minimum velocity, is one of the simplest ways to design duct systems for supply and return air ducts. However, it requires experience to use this method as the incorrect selection of velocities, duct sizes and choice of fixtures could increase the cost. Moreover, to maintain the same rate of pressure drop in duct runs, this method requires partial closure of dampers in duct runs (except index run) which could affect efficiency.

2. Equal Friction Method – This conventional method used for both supply and return ducts maintains the same frictional pressure drop across main and branch ducts. This method ensures dissipation of pressure drops as friction in duct runs rather than in balancing dampers. However, like the velocity method, partial closure of dampers is required and this could lead to noise generation.

3. Static Regain Method – This method commonly used for large supply systems with long ducts is a high velocity system that maintains constant static pressure before each branch or terminal. While this is a balanced system as it does not involve dampering, longer ducts may affect air distribution to conditioned spaces.

While different duct design methods used vary from application to application, duct system performance and system balancing and optimisation need to be considered. After the air handling unit (AHU) is installed, the system needs to be balanced and optimised to enhance performance. In system balancing and optimisation, air flow rates of supply air outlets and return air inlets are measured, and dampers and fan speed are adjusted. Especially in large buildings, balancing air conditioning systems may be expensive and time-consuming, but it is required as it provides benefits that outweigh the cost incurred in installing the system. To minimise total and operating cost, many optimisation methods are used as such as the T-Method Optimisation described in the DA3 Application Manual of AIRAH (Australian Institute of Refrigeration Air Conditioning).

To design air distribution systems that are energy efficient and cost effective, HVAC system designs must include basic engineering guidelines and adhere to certain design standards. Let us consider some of the guidelines and standards used in the industry in different countries.

Ductwork Design Standards

When designing air conditioning systems, HVAC design engineers must be knowledgeable about the basic methods, guidelines and standards applicable, from the type of units used, calculations required, methods of construction, type of material, duct system layouts, pressure losses, duct leakage, noise considerations to optimisation using testing, adjusting and balancing (TAB). Listed below are some of the standards organisations and associations in the U.S., U.K., Australia and India, that provide manuals, codes and standards for the HVAC industry.

U.S.

• SMACNA (Sheet Metal and Air Conditioning Contractors’ National Association) – It provides a manual on HVAC systems duct design that includes basic yet fundamental methods and procedures with importance on energy efficiency and conservation. While the manual does not include load calculations and air ventilation quantities, it is typically used in conjunction with the ASHRAE Fundamentals Handbook.

• ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) – It is an association that emphasises on the sustainability of building systems by focusing on energy efficiency and indoor air quality. The ASHRAE Handbook is a four-volume guide that provides the fundamentals of refrigeration, applications, systems and equipment. Updated every four years, the handbook includes international units of measurement such as SI (systems international) and I-P (inch-pound).

U.K.

• CIBSE (The Chartered Institution of Building Services Engineers) – is the authority in the UK that sets standards for building services engineering systems. The Codes and Guidelines published by CIBSE are recognised internationally and considered as the criteria for best practices in the areas of sustainability, construction and engineering.

• BSRIA (Building Services Research and Information Association) – is an association that provides services that help companies enhance their designs to increase energy efficiency in adherence to Building Regulations, mock-up testing of systems and BIM support.

Australia

• AIRAH (Australian Institute of Refrigeration Air Conditioning) – provides technical manuals for professionals in the HVAC industry and information ranging from air conditioning load estimation, ductwork for air conditioning, pipe sizing, centrifugal pumps, noise control, fans, air filters, cooling towers, water treatment, maintenance, indoor air quality and building commission.

India

• BIS (Bureau of Indian Standards) – is a national authority that provides standards and guidelines as per the International Organization for standardisation (ISO). The handbooks by BIS stipulates the code of practices applicable to the HVAC industry such as safety code for air conditioning, specification for air ducts, thermostats for use in air conditioners, metal duct work, air-cooled heat exchangers and data for outside design conditions for air conditioning for Indian cities

• ISHRAE (The Indian Society of Heating, Refrigerating and Air Conditioning Engineers) – provides indoor environmental quality standards and testing and rating guidelines based on common IEQ parameters standards and criteria for the classification of buildings based on energy efficiency.

While HVAC design engineers must keep relevant standards in mind and ensure that local codes are applied in designs, energy efficiency is a primary objective as well. Ductwork design plays a significant role in regulating indoor air quality, thermal comfort and ventilation. The key function of ductwork design is to provide the least obtrusive channel through which cool and warm air can travel in the most efficient and cost-effective way.

Inaccurate duct designs could result in poor indoor air quality, heat loss and uncomfortable conditioned space in the building. A well-designed air conditioning HVAC system will ultimately optimise costs. By regulating pressure loss, selecting the right duct size, balancing air pressure and controlling acoustics, ductwork designers could optimise manufacturing, operational, environmental and commissioning costs.

 

BIM Process Risks for MEP Design Service and How to Mitigate Them

Global construction practice has seen substantial changes over recent years, with the arrival of BIM being a key factor. Building Information Modelling, known as BIM, is a process that involves the creation of 3D models, which enables designers and engineers to create accurate construction scheduling, estimate costs and adapt intelligently to design changes. Accurate building information models and precise building designs are created from the outset, which benefits all stakeholders in the construction process, particularly MEP (mechanical, electrical and plumbing) designers. MEP (M&E) designers or engineers design MEP services, while MEP contractors are then responsible for spatial coordination, detailed design, fabrication and installation. Though BIM drives an effective process for MEP (M&E) design services, there are some risks involved. We look at how these risks can be mitigated.

Firstly, it is useful to understand exactly what the BIM process contributes to MEP engineering design. A BIM model helps visualise spatial MEP requirements. Detailed views are created for analysis, and any clashes of spatial requirements are identified and can be resolved at an early stage. Designs can be altered to mitigate any clashes, and these changes can be seen in the model.

The progress of the MEP design and coordination workflow process has been supported and driven by technological advancements. BIM technology has played an important role in making this possible, especially the use of 3D models through Autodesk’s BIM 360 tool. BIM 360 is a cloud-based software platform developed primarily for construction, which employs checklists, equipment tracking and the monitoring of tasks to improve quality and on-site safety. Within BIM 360, models can be utilised for 2D construction documentation and the 3D coordination of trades. BIM 360 permits the control of processes by project managers, subcontractors, designers and architects at all design stages. It enables the sharing of vast amounts of information between stakeholders and easy communication.

MEP designers can utilise architectural, structural and trade models to plan in detail from the onset of a project by designing in 3D. In general, the process involves MEP design and installation workflows that will streamline planning, designing, coordination, fabrication, installation and construction of a project. Following architectural design, the MEP design engineer develops building services design elements, such as lighting, cooling, heating, drainage, waste, fire prevention and protection services. In most cases, the design engineer is not involved with the detailed spatial design of building services. Usually, it is the MEP, or trade, contractor who carries out the detailed spatial design and installation. It falls to the MEP contractor to convert the consultant’s design into an installation-ready MEP format and provide MEP shop drawing services. At times, fabricators creating ductwork or pipework elements, electrical ladders or sprinklers in a module also contribute.

The BIM process brings all stakeholders on to the same platform at every design stage.

Therefore, an effective collaboration tool would be required to:

  • Enable access to MEP designers, architects, structural designers, MEP contractors
  • Host various formats for files and documents
  • Ease communication
  • Permit designers and shareholders to work on the same models and share design data

BIM 360 Team with Collaboration for Revit (C4R) offers this. It integrates stakeholders and project information into a single cloud-based platform and improves quality while reducing rework. Checklists can monitor safety on site, equipment can be tracked and asset data can be collated. Any problems can be resolved early in the design process, minimising delay, cost and rework.

BIM Process Risks for MEP

Communication

If architects, modellers and designers do not communicate properly, designs may not be properly integrated and the occurrence of errors in the MEP model will increase.

Building Code Understanding

Client needs and local code requirements are of paramount importance and must be clearly understood. If misunderstandings of building codes and client requirements occur the MEP design will be negatively impacted.

Coordination

Stakeholders must coordinate effectively. Any modification executed by any MEP service should be communicated to all other trades. Failure to do so can create hazards at the project implementation stage.

Cost Estimation

The BIM process can help determine overall costs and take off quantities. MEP resources, labour and prices are considered, but materials availability and costs may vary over the duration of the design and implementation, affecting cost estimation.

Technical Knowhow

Effective BIM usage requires in-depth knowledge of BIM technology and Revit, Navisworks, etc. to develop precise MEP designs. Errors could prove costly.

Incomplete BIM Use

In common practice, BIM is used for a specific MEP objective rather than for each and every part of the design process. These include:

  • Remodelling or renovation
  • Material takeoffs and estimation
  • Design models by contractors
  • Detailed models of MEP components

Unless the BIM scope and output are accurately defined, the intended use of the BIM model may not occur.

BIM Model Not Shared with Construction Team

When 2D documents are printed from the model, some of the 3D data may not be transferred. The construction team may need to design a new 3D model, leading to unexpected changes. Designers may not share models with contractors because they are incomplete or do not tally with the construction documents, creating errors and tensions.

Not Possible to Model Everything

Creating models is time consuming. Many details, such as size, shape, location, quantity, and orientation with detailing, fabrication, assembly and installation information, can be included. It may not be possible to create models for every portion of the design, resulting in an incomplete overall picture.

MEP Design Handoff

Contractors traditionally received 2D line diagrams, schedules and specifications of the design from MEP designers. Currently, an increasing number of MEP design engineers create models, raising confusion about who is responsible for duct placement, equipment placement and coordination responsibility – designers or contractors. Models created by MEP designers may not be spatially accurate enough during the early stages.

However, there are several ways to mitigate these shortfalls, such as:

  • Early BIM Adoption (During Design Stage)

All project stakeholders should be encouraged to use BIM from the design stage, with clear guidelines for its use. If BIM is adopted at a later stage without clear specification of its purpose, the results could be confusion, wastage of time and increasing costs.

  • Defined Roles within the BIM Process

Design and modelling roles must be clearly defined before beginning design. If MEP subcontractors need to provide MEP BIM, with accurate routing, attachment details and equipment connections, they must be clearly informed of this and it should be part of the contractual obligations. They will not be able to rely on MEP consultant models in such a case.

  • Improved Coordination Skills

MEP design in BIM currently utilises improved spatial coordination skills during the design phase. This could be a result of employing more technically qualified professionals for these services, and as a consequence, contractors are presented with more accurate models to work with.

  • Accountability for Coordination

Internal coordination is necessary for a viable BIM model, much like a 2D drawing set used to be. Revisions, modifications and file versions must be coordinated as well. Since 3D models are complex, coordination must be monitored and controlled to prevent expensive and unnecessary rework. Even though files can be hosted in the cloud, it is advisable to maintain backups.

It is a certainty that precise, effective design with fewer errors is possible using BIM but there may be challenges in achieving those designs. Specifying the role of BIM, its usage, the stakeholders involved and the challenges to be expected can help optimise the benefits of using BIM and minimise its risks. The positive impact of building information modelling will be felt for some time. Analysing and mitigating the risks involved in its use can only benefit the industry and its players.